REUNIÓN DE XXIV ANIVERSARIO ASOCIACIÓN VENEZOLANA DE GESTIÓN DE INVESTIGACIÓN Y DESARROLLO AVEGID ASOCIACIÓN INTERNACIONAL DE GESTIÓN DE INVESTIGACIÓN Y DESARROLLO AIGID

Optimal Strategies to Perform Multilingual Analysis of Social Content in the Tourism Domain

<u>Maxime Masson</u>, Christian Sallaberry, Rodrigo Agerri, Marie-Noelle Bessagnet, Philippe Roose, Annig Le Parc Lacayrelle

Caracas, 30 de enero de 2024

Significant growth in data sources available in many domains Web 2.0 and User-Generated Content (UGC)

Context APs Project

Motivations Decision Support in the Tourism Domain

В

D

- Assistance in the **decision-making** process and infrastructure planning
- Understanding the **requirements**, **practices** and **expectations** of visitors

What leisure activities do tourists typically engage in together?

Which cities do tourists tend to go to after visiting Bayonne?

What are the typical demographics of tourists who visit Biarritz?

What are the common chained tourist activities?

Framework Life Cycle

Double Genericity

- Domain of Application
- Social Media Source
- Semantic resource to describe the domain
- Decision support for nontechnical users
 - Indicators and Visualizations

Information Extraction

Common Knowledge Extraction Tasks

) Challenge 1: Identifying best knowledge extraction strategies and models for a given application domain and task

Challenge 2: Determining the number of domain-specific annotated examples needed to get satisfying results

- Manually annotating → Lengthy, costly, time-consuming
 - Objective → Get optimal results with minimal use of annotated examples
- **Hypothesis**: Use of a comparative study on optimal strategies for multilingual analysis of

social media content based on a novel annotated dataset

Limitation: Tourism domain, social media texts

Related Work

Rules-based Techniques

Technique based on	Advantages (+)	Disadvantages (-)			
Lexicon	Easy to implement, easily understandable	Requires a lexicon, limited by lexicon size , ignores context and grammatical structures			
Patterns	Precise for well-defined patterns	Missing variations not covered by patterns, requires properly formatted sentences			
Syntax and grammar	Exploits linguistic structures for deeper analysis	Complex to maintain , especially in multilingual contexts			
Semantics	Can understand nuanced meanings and relationships between terms	Require comprehensive semantic knowledge bases, more computationally intensive			

Related Work Fine-Tuning and Few-Shot Prompting

Experimental Setup

Multilingual Dataset

Language Models

2961 tweets, 624 users

Machine Learning Techniques

Dataset Sampling Methods

.

 \ge

Comparative Analysis

0

٠

1.

2.

3.

Results Sentiment Analysis

7B

- A model (like XLM-T Sentiment) pre-trained on a large dataset even out of domain surpasses all other techniques
 - Best results are achieved with **just 5 examples**
 - Very high precision of 0.939

If such a model is not available, few-shot prompting techniques with LLMs (like GPT and Mistral) are the best alternatives to avoid lengthy manual annotation.

• Accuracy of 0.785 for GPT 3.5, 0.716 for Mistral

	Examples per class (positive, negative and neutral) — Accuracy								
Techniques	0	5	10	20	30	40	50	100	All
Prompt-based FS	Regular Prompt-based Few-Shot of LLMs								
GPT 3.5	0.785	0.739	0.757	0.766	0.694	0.685	0.664	0.645	
Mistral 7B	0.716	0.766	0.764	0.754	0.761	0.760	0.758	0.760	
LLaMA 2 7B	0.442	0.589	0.598	0.680	Exceed	ing Inpu	t Contex	t Length	
FT of MLMs	Fine-Tune of Encoder-Only Models (MLMs)								
XLM-T		0.428	0.385	0.503	0.545	0.622	0.646	0.792	0.868
XLM-T Sentiment		0.917	0.939	0.922	0.877	0.875	0.925	0.914	0.919
FT of LLMs	Fine-Tune of Encoder-Decoder and Decoder-Only Models (LLMs)								(LLMs)
Mistral 7B		0.640	0.618	0.628	0.706	0.750	0.706	0.771	0.828
LLaMA 2 7B		0.594	0.651	0.613	0.738	0.763	0.759	0.761	0.844
РЕТ	Cloze-Style Few-Shot with MLMs								
XLM-T		0.533	0.607	0.661	0.691	0.722	0.764	0.796	0.880
XLM-T Sentiment		0.598	0.717	0.729	0.819	0.787	0.855	0.874	0.877
SetFit (SF)	Combination of Few-Shot and Fine-Tuning for Sentence Transformers								
XLM-T		0.534	0.582	0.712	0.715	0.776	0.732	0.803	0.832
XLM-T Sentiment		0.831	0.878	0.876	0.893	0.882	0.899	0.858	0.821

Results NER for Locations

- Task with few classes (1 LOC class) but many label
 words (625 toponyms, low representativeness of
 label words)
- If it is possible to annotate many examples (330 minimum and up to 800 for optimal results), fine-tuning with MLMs works very well (F1 > 0.8 with 800 examples)
- Otherwise, **30 examples are enough** to **obtain satisfactory results** in few-shot with LLMs (0.75 with Mistral and 30 examples)
 - With only 10 examples , the machine learningbased methods outperform the rule-based method

	Examples per class (location) — F1-score								
Techniques	0	5	10	20	30	40	50	100	All
Prompt-based FS	Regular Prompt-based Few-Shot of LLMs								
GPT 3.5	0.694	0.698	0.762	0.762	0.798	0.809	0.828	0.806	
Mistral 7B	0.680	0.704	0.689	0.730	0.749	0.741	0.742	0.739	
LLaMA 2 7B	0.627	0.587	0.615	0.594	0.621	0.580	0.568	0.169	
FT of MLMs	Fine-Tune of Encoder-Only Models (MLMs)								
XLM-T		0.067	0.113	0.001	0.029	0.000	0.067	0.054	0.802
XLM-R		0.107	0.067	0.130	0.062	0.328	0.133	0.001	0.791
mBERT		0.115	0.108	0.083	0.007	0.000	0.000	0.000	0.818
FT of LLMs	Fine-Tune of Encoder-Decoder and Decoder-Only Models (LLMs)								
LLaMA 2 7B		0.000	0.000	0.000	0.000	0.000	0.000	0.228	0.701
FlanT5		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.806
EntLM	Template-Free Few-Shot in Sequence Labeling Tasks for MLMs								
mBERT		0.317	0.385	0.437	0.529	0.562	0.591	0.584	0.788
GoLLIE	Guideline following model for Information Extraction								
GoLLIE 7B	0.670	0.622	0.632	0.662	0.661	0.694	0.689	0.732	0.832

Results
Discussion

Combining our training dataset

with other datasets dedicated to

NER

- ESTER Corpus
- AnCora
- Broad Twitter Corpus (BTC)

No significant improvements

Results Fine-grained Thematic Concept Extraction

✓ Task with many classes (315 classes of the tourism thesaurus) but few label words (high representativeness of label words)

V Transfer learning (fine-tuning) does not work

 \checkmark EntLM with ~1000 annotated tweets or lexicon-based approach is preferred

- Extension to other application domains to ensure the generalizability of our results
- Experiment on larger dataset
- Extension to other languages and text types (e.g., newspaper)
- Propose strategies for using LLMs for the extraction of fine-grained thematic concepts
 - **1. High-level category processing** : group the 315 fine concepts into higher-level concepts for a first inference, then refine with the associated fine concepts
 - **2.** Batch processing : divide the 315 fine concepts into small batches (e.g. 20) and run the inference in batches, then merge the results

Conclusion

Example of application: The TextBl Dashboard

Thank you for your attention.

Any questions?